
Secure Coding Techniques



Input Validation
• How do we handle errors in code?

• Errors are going to happen, proper error handling involves 
capturing the log file and reporting it

• Then, it can be fixed later
• We do not want the errors reported to an attacker

• Why do we validate inputs?
• Validating inputs is making sure what is supposed to be input 

is being input
• This helps stop XSS, XSRF, and other attacks from happening

• Normalization is the first step of validating inputs
• It checks to make sure if the answer looks “normal”

• For example, if asking for a first name, “jsmith@gmail.com” would 
not be normal



Stored Procedures

• Stored procedures are defined functions that 
are stored in a database engine

• These procedures can be used with input validation
• They do not alter the database

• They just get the information from the database
• Really secure databases will only used stored 

procedures and not allow other methods of 
getting data



Obfuscation/Camouflage

• Obfuscation is making something super easy 
and making it very hard to understand

• Developers will take very simple code and make it 
very unreadable

• Developers will keep the simple code, and give the users 
the hard to read code

• Does not change what the code does, just makes it harder 
to follow

• This makes finding security holes much harder
• Attackers have to figure out what is happening
• Takes them more time, doesn’t make it impossible, just 

more time



Code Reuse/Dead Code
• Code reuse is using old code to help in the 

making of new applications
• This is as simple as copy and pasting
• Saves the developers a lot of time
• If that old code has vulnerabilities, it will also be in 

the new code
• Creates a ripple effect

• Dead code may or may not be used
• But what it produces is useless to the rest of the 

code
• Need to eliminate if possible

• There are compiler options that check for dead code



Server-side vs. Client-side 
execution and validation
• Server-side validation is checking for errors on 

the server
• This helps protect against malicious users

• Malicious users could be trying to use a different interface

• Client-side validation checks for errors on the 
client’s app

• This can be faster for users
• Can use both

• A little more secure with server-side
• Use more server-side validations than client-side



Memory Management

• As a developer, you must be mindful of how 
memory is used

• Many opportunities to build vulnerable code
• Bad memory management can lead to leaks

• These leaks spread over time
• Become a security risk



Third-Party Libraries and SDKs

• Third-party libraries and software development 
kits (SDK) can help programmers

• Save a lot of time
• Increase the functionality of a language 

• These are also huge security risk
• Who is writing the code?
• Could be very secure, could not be!
• Always test the code before using it



Data Exposure

• Data exposure is losing control of data during 
operations

• You must always protect data
• Data exposure must be limited 

• Must protect the user’s data!
• Data must be protected when…

• Stored (data at rest)
• Being communicated (data in transit)
• While being used (data in use)


	Slide Number 1
	Input Validation
	Stored Procedures
	Obfuscation/Camouflage
	Code Reuse/Dead Code
	Server-side vs. Client-side execution and validation
	Memory Management
	Third-Party Libraries and SDKs
	Data Exposure

